
Bi 1x
The Luria-Delbrück ƶuctuation test

1 Overview
In this module, we will explore one of the most clever and intriguing biology ex-

periments performed in the last century. In 1943, Salvador Luria andMax Delbrück
showed how two different theories of evolution, a unifying theme in biology, could
be distinguished through a potent combination of theory and experiment. The lab
focuses on computing themutation rates ofmicroorganisms and examines this result
in light of experimental findings. After many decades, this experiment is still used in
molecular biology labs.

2 Background
Whenmutations occur in nature they are often deleterious to an organism, since

it is easier to break a complex system refined by hundreds of years of evolution than
to serendipitously land upon a beneficial change. At the same time, mutations are
a critical part of the genetic heritage of living organisms, arising in every type of
creature and allowing life to evolve and adapt to new environments. In 1943, the
question of howmicroorganisms acquiremutations was described in a famous article
by Luria and Delbrück (S. E. Luria and M. Delbrück, Genetics, 28, 491–511, 1943).
At the time, there were two prominent theories of genetic inheritance. Scientists did
not know if mutations arose randomly in the absence of an environmental cue, the
“random mutation hypothesis,” or whether they occur as an adaptive response to
an environmental stimulus, the “adaptive immunity hypothesis.” See Fig. 1.

To test these two hypotheses, Luria and Delbrück grew many parallel cultures
of bacteria and then plated each culture on agar containing viruses known as phages
(which infect and kill nearly all of the bacteria). Although most bacteria are unable
to survive in the presence of phages, often mutations could enable a few survivors
to give rise to resistant mutant colonies. If the adaptive immunity hypothesis is cor-
rect, mutations occur only after bacteria come in contact with phages, thus only after
plating the bacteria on phage-agar plates. Under this hypothesis, we would expect a
low variance in the number of resistant colonies that appear on each plate.

However, if the mutations arose randomly prior to phage exposure as bacteria
were growing in the liquid culture, the number of mutations in each culture would
vary wildly, as mutations could occur at any time during the liquid culture phase and
accumulate exponentially. Mutations that arise early in the culture will give rise to an
exponentially growing population of mutant cells, which will result in large number
of resistant colonies after plating. In contrast, mutations that occur at later times will
result in fewer colony counts after plating. Hence, the random mutation hypothesis
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Figure 1: A schematic for the Luria-Delbrück fluctuation experiment. For the
“adaptive immunity hypothesis,” we expect to see a low variance in the num-
ber of cells immune to the selection factor per trial. The “random mutation
hypothesis,” on the other hand, predicts a high variance in the number of im-
mune cells per trial.

makes the prediction that there will be a large variance in the number of resistant
colonies coming from different cultures.

Your task is to test the two hypotheses of inheritance using cultures of the yeast
S. cerevisiae. Instead of using phage, we will expose the yeast to canavanine, a toxin.
Using the mean and variance obtained from number of mutant colonies in each cul-
ture, you will be able to deduce which one of the two hypotheses more accurately
describes the mechanism underlying the rise of mutations. Additionally, we will cal-
culate the mutation rates in the wild type and a mutator strain. The mutator strain
contains a deletion in one of its DNA repair genes. The logic is that the mutator
strain should have a higher mutation rate and hence should result in more colonies
reflecting a higher proportion of resistant cells.

2.1 Theoretical predictions for the Luria-Delbrück experiments
Howcanwe determinewhich hypothesis is correct from aLuria-Delbrück exper-

iment? As we now show, the two hypotheses predict significantly different statistics
so that by comparing theory with experiment we can deduce whether the random
mutation hypothesis or the adaptive immunity hypothesis is more likely.
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2.2 A toy problem
Before doing a more involved calculation, it is generally a good idea to test your

intuition with toy problems. Let us illustrate this approach with an example. The
beauty of this approach is that using just three generations, we can see how statistical
metrics of mutations vary between the two hypotheses.

Fig. 2 shows the trajectories from a single wild type cell in which mutations may
occur in every generation. The probability of a mutation occurring for a given cell
division is a. We can sketch out all possible trajectories for the random mutation
hypothesis and the adaptive immunity hypothesis. Note that the adaptive immu-
nity hypothesis does not allow for the trajectory in which a cell is mutated prior to
exposure to toxin.

For the randommutationhypothesis, the expectednumber ofmutated cells present
at time t = 1, is calculated as

Mmut =
0 · 1+ 2 · a + 1 · a + 1 · a + 2 · a2

1+ a + a + a + a2 =
4a + 2a2

1+ 3a + a2 ≈ 4a, (1)

were we have used the fact that a ≪ 1. In prelab problem 1, you will compute the
mean for the adaptive immunity hypothesis, and the variance for both hypotheses.
From there, you can compute the Fano factor, the ratio of the variance to the mean
(expected number of mutated cells), as ametric of the expected variation in the num-
ber of mutants. The Fano factor is decidedly different for the two hypotheses, and
can therefore be used to determine which hypothesis is more likely to be true.1450 CHAPTER 21. SEQUENCES, SPECIFICITY, AND EVOLUTION
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Figure 21.30: Toy model of the Luria-Delbrück experiment. Bacteria at t = 0
undergo a round of cell division. At t = 1 they are exposed to viruses. (A) Under
the random mutation hypothesis a mutation can occur in the cell division that
led to the cell we are considering at t = 0 with a probability a. Additionally,
either one or both of the daughter cells can acquire a mutation. (B) In the
adaptive mutation hypothesis cells can acquire a mutation upon exposure to
viruses with a probability a.

whereas for the adaptive mutation hypothesis we have

V aradaptive
hmiadaptive

= 1. (21.43)

Already in one round of division we expect larger fluctuations under the random
mutation scenario. Again, these fluctuations will become even larger as the
size of the population increases. With this intuition in hand we now turn to
calculating the variance as a function of the age of the culture.

In order to model the appearance and growth of the mutant population we
resort to a master equation that describes the probability of finding m mutant
bacteria at time point t, p(m, t). In doing so we need to think of the possible
trajectories of the system shown in Figure 21.31. In this figure we can see that
there are two ways the population of mutant cells can increase: i) by mutation
of a wild-type cell and ii) by cellular division of a mutant cell. The resulting
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Figure 2: A theoretical approach to testing the Luria-Delbrück mutation hy-
pothesis. Adapted from Fig. 21.30 of Physical Biology of the Cell, 2nd Ed., by
Phillips, Kondev, Theriot, and Garcia, Garland Press, 2012.
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2.3 Statistics under the adaptive immunity hypothesis
Under the adaptive immunity hypothesis, no cells undergo mutations prior to

exposure to the toxin. Upon exposure to toxin, the probability that a given cell will
mutate in the next generation is a. What is the probability that one generation after
toxins are introduced, n out of a total of N cells are mutated? (t = 1 at the bottom
of Fig. 2 shows this for N = 2 cells.) There are two components to this probability.
First, there is the chance that cells 1 through n are mutated and cells n+ 1 through N
are not. Since the cells have independent chances of mutation, this is an(1− a)N−n.
But, we arbitrarily labeled the cells. We have to also take into account the number of
ways to label the cells that are mutated. There are

(N
n

)
, pronounced “N choose n”

ways to do that, where(
N
n

)
=

N!

n!(N − n)!
. (2)

Thus, we have

P(n;N) =
N!

n!(N − n)!
an(1− a)N−n, (3)

the probability of having exactly n out of N cells be mutated. This probability distri-
bution is called the binomial distribution.

What is the most likely value of n? Answering this question requires computing
the first moment of P(n;N). We recall the formula for computing the moment of a
probability distribution.

⟨nm⟩ =
N∑

n=0

nm P(n;N), (4)

where ⟨nm⟩ is the expectation value for nm, or the mth moment of the distribution
P(n;N). In particular, the mean is μ = ⟨n⟩ and the variance is σ 2 = ⟨n2⟩ − ⟨n⟩2.
As derived in the appendix (section 5), the mean and variance are

μ = Na; (5)

σ 2 = Na(1− a) ≈ Na for a ≪ 1. (6)

Therefore, if the adaptive immunity hypothesis is correct, the mean number of sur-
viving colonies should be equal to the variance in the number of surviving colonies.
This means that the Fano factor, F = σ 2/μ , is approximately unity.

2.4 Statistics under the random mutation hypothesis
Under the random mutation hypothesis, mutations can occur at all times before

exposure to toxin. Computing these statistics is more involved than for the adaptive
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immunity hypothesis, which involved only a single generation. Wewill not derive the
statistics here, but encourage you to read Luria andDelbrück’s original paper and/or
section 21.4.3 ofPhysical Biology of the Cell, 2nd Ed. by Phillips, Kondev, Theriot, and
Garcia for a discussion. The important result is that the mean scales with N (as we
would expect), but the variance scales as the square of the number of cells present,
or σ 2 ∼ N2. Contrast that to the adaptive immunity hypothesis, where σ 2 ∼ N.
Thus, the Fano factor F scales like F ∼ N, which is much bigger than that for the
adaptive immunity hypothesis, where F ≈ 1. So, if we wait enough generations such
that N becomes substantial, we can check:

• The Fano factor is close to unity⇒ the adaptive immunity hypothesis is more
likely true.

• TheFano factor is large⇒ the randommutation hypothesis ismore likely true.

To compute the Fano factors, we will need to compute the mean and variance
from our data.

2.5 Deducing the mutation rate
Regardless of whether the adaptive immunity or random mutation hypothesis is

correct, there is a clever way to determine the mutation rate. Say we have N op-
portunities for mutations to occur (i.e., if we take a time interval for mutations to
occur to be the time of cell division, there are N such time intervals). The probabil-
ity that mutations occur n times is given by the binomial distribution, equation (3).
The probability that zero mutations occurred is then

P(0;N) =
N!

0!(N − 0)!
a0(1− a)N−0 = (1− a)N. (7)

Therefore, we can measure the fraction of spots that have zero colonies to obtain an
estimate of P(0;N). We can compute N from counting cells and then use equation
(7) to determine the mutation rate a.

For the adaptive immunity hypothesis, the number of mutations equals the num-
ber of cells carryingmutations, so both are binomially distributed. Conversely, under
the random mutation hypothesis, the number of mutations is binomially distributed
and not the number of cells carryingmutations. The probability that, e.g., 16 colonies
are found on a spot does not equal the probability that 16 mutations occurred. A sin-
gle cell could have had a mutation and divided four times, giving 16 daughter cells,
or there could have been 16 mutations in different cells. However, in the case where
there are zero colonies, there are no mutations, so the probability that there are no
mutations equals the probability that no colonies form.
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3 Protocol
This experiment will take place over two lab periods. Parallel cultures of wild

type and mutator strains of S. cerevisiae have already been started for you. To begin
the cultures, the TAs grew each strain in 96-well plates and incubated them. During
this lab period, you will plate these cultures, and after two or three days you will be
able to count the number of mutant colonies that arise from each culture. The cul-
ture conditions have already been optimized to ensure that a portion of the plated
cultures bear zero mutations, since this information will be used for calculating mu-
tation rates.

3.1 Counting cells (Week 3)
You will be given a 96-well plate containing saturated cultures. In order to cal-

culate the mutation rate of each strain, you will need to determine the total number
of cells. You will count the yeast cells using a hemocytometer. This device con-
tains a specialized cell counting chamber, which has a grid of known area and depth.
Three separate cultures of each strain of yeast will be counted to determine the re-
producibility of the counting method. In each pair, one person will be responsible
for the wild type strain, and the other for the MSH2 mutator strain.

For the wild type strain only, dilute 10 µL of the strain into 90 µL of water be-
fore counting in the hemocytometer because this strain ismuchmore numerous than
MSH2. Therefore, the cell density you will measure in the hemocytometer for wild
type will be 1/10 of its actual density.

1. Sample preparation: Label one of your hemocytometer’s sample injection
areas with “WT” and the other with “MSH2.” Choose a culture (WT or
MSH2) and re-suspend cells thoroughly bypipetting up anddown. You should
have your pipette volume set to 10 µL.

2. Sample injection With a steady hand, pipette 10 µL of the appropriate cul-
ture in the corresponding injection area (see Figure 3), making sure to fill the
hemocytometer chamber.

3. Cell counting: When you are ready to view your yeast cells, place the hemo-
cytometer in a microscope. Use the Brightfield setting with a 10× objective
lens and appropriate phase contrast. As shown in Figure 3, you will see a 3×3
grid of 1mm×1mm squares. Each square is further subdivided into smaller re-
gions, since the field of view is not large enough to view an entire 1mm×1mm
square. Take pictures in the middle square and the four corner squares so you
can calculate the cell density in units of cells/mL. To calculate density, you
will need the volume of the detection area which can be computed using Fig-
ure 3. Remember to change the prefix of your filenames when you switch from
wild type to MSH2.
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Figure 3: Left, loading a hemocytometer. Right, cells on a grid used for cell
counting.

3.2 Plating cells (Week 3)
Once the yeast cells are counted, the next step will be to plate 27 cultures of each

strain on dry agar plates containing canavanine, a selective agent that is toxic to yeast.
Thedry plates have a textured surface and reducedmoisture content thatwill provide
a good surface for pipetting large-volume spots onto a plate. In each pair, one person
will be responsible for plating wild type cells while the other is responsible for plating
mutator (MSH2) cells. There will be a total of 3 plates per person and 6 plates per
pair.

1. Label your 3 plates. Indicate which strain of yeast is being plated (WT or
MSH2), your full name, and the date on the edge of the plate. Be sure to label
the bottom of the plate, as lids can get inadvertently switched between plates.

2. Using the spotting template at your station, draw 9 squares on the bottom of
each plate to mark where your spots will go. This will help you count your
colonies.

3. Pipette 100 µL of culture from a chamber in the 96-well plate containing the
culture you are assigned to do. Place the 100 µL onto a spot in the top left
corner on one of the plates.

(a) Be sure to pipette up and down to mix before plating cells.

(b) Try to place the spots far enough apart that the individual spots do not
merge but avoid the edge of the plate.

(c) Caution: Do not tilt the plates after the 100 µL spots have been placed.
Keep the plates in a horizontal position until the spots have dried. Oth-
erwise, the liquid spots will run!

4. Repeat for another 8 cultures, placing spots on the plate such that they form a
3×3 grid. (See Fig 4.)

5. Repeat steps 2 through 3 for each of your plates. You should have placed a
total of 27 spots by the end.
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6. Give your plates to the TA for incubating at 30◦C for 2-3 days to allow cells to
grow.

a. Be#sure#to#pipette#up#and#down#to#mix#before#plating#cells.#
b. Try#to#place#the#spots#far#enough#apart#that#the#individual#spots#do#

not#merge.#
c. Caution:#Do#not#tilt#the#plates#after#100uL#spots#have#been#placed.##

Keep#the#plates#in#a#horizontal#position#until#spots#have#dried.#
Otherwise,#the#liquid#spots#will#run!###

#
3. Repeat#for#another#8#cultures,#placing#spots#on#the#plate#such#that#they#form#

a#3x3#grid.#(See#Figure#2).##
#

4. Repeat#steps#2#through#3#for#each#of#your#plates.#You#should#have#placed#a#
total#of#27#spots#by#the#end.#
#

5. Give#your#plates#to#the#TA#for#incubating#at#30#C#for#2O3#days#to#allow#cells#to#
grow.##

#
#

"
"
"
"
"
"
"
"
"
"
"
"
"
"

#
#
#

Figure#2.#Plating#yeast#cultures.##
"
"
3.4"Counting"Colonies"(Day"2)"
"
After#2O3#days,#colonies#will#grow#where#you#have#placed#spots#on#the#canavanine#
dry#plates.##Cells#that#contain#a#mutation#conferring#resistance#to#canavanine#will#
grow#up#to#form#colonies.#You#will#now#examine#the#numbers#of#resistant#colonies/#
spot#observed#for#the#Wild#Type#and#mutator#strains.##
#

Figure 4: Spotting pattern for canavanine plates.

3.3 Counting colonies (Week 4)
After 2-3 days, colonies will growwhere you have placed spots on the canavanine

dry plates. Cells that contain a mutation conferring resistance to canavanine will
grow up to form colonies. You will now examine the numbers of resistant colonies
per spot for the wild type and mutator strains. �

1. Obtain your plates and count the colonies in each spot for your strain. Record
these numbers in your lab notebook (each person in each group should have
record 27 numbers: 3 plates× 9 spots/plate).

2. Make a note in your lab notebook if spots contain too many colonies to count
accurately by eye.

3. Be sure to record zero-colony spots as they are important in determining mu-
tation rate.

4. Your TAs will provide you a spreadsheet in which to enter your cell counts.
Do this before leaving the lab!

3.4 Sequencing the CAN1 region of mutated yeast cells (Week 4)
The CAN1 gene produces a protein that carries canavanine across the cell bar-

rier. Mutations in this gene are what allow yeast to survive on the selective media.
You will perform PCR in several weeks on survivor colonies and have the CAN1 re-
gion of the genome sequenced. This may show what mutation(s) allowed survival of
these colonies in the face of canavanine. The protocol will be performed during the
DNA extraction portion of the Winogradsky column experiment. The details of the
protocol are contained in the handout of that module.
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Figure 5: Mutator yeast colonies after 17 hours of incubation. Note that there
are no zero-colony spots in on these plates, so this data set could not be used to
compute mutation rates.

3.4.1 Colony PCR (Week 4)
1. Before combining your colony PCR reaction mixes, you will need to suspend

colonies in 50 µL of sterile water (provided). Suspend one colony of wild type
cells in 50 µL of water. Repeat this process for one colony of mutator cells.

2. You will have two “experiment” PCR reactions (one for wild type and one
for the mutator strain) and one no-template control. The recipes for the PCR
mixes are shown below. Note that the “Master mix” contains the DNA poly-
merase, free nucleotides, and salts at twice the necessary concentration for
our PCR reaction. CAN-1 primers are initially at 10 µM.

Table 1: Colony PCR reaction mixes

Reagent No-template control Experiment
sterile water 10 µL 19.5 µL

Phusion 2×Mastermix 12.5 µL 25 µL
forward primer (0.5 µM) 1.25 µL 2.5 µL
reverse primer (0.5 µM) 1.25 µL 2.5 µL

colony suspension — 0.5 µL

total 25 µL 50 µL

3. Mix gently, spin down, and place tubes in a thermocycler. Clearly label your
tubes! (This may be easier if written on the side of the tube.) The PCR reac-
tion conditions are given in the following table.
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Table 2: L-D colony PCR: thermocycler conditions using CAN1 primers

Step Temperature Time Cycles
initial denaturation 98◦C 30 sec. 1

denaturation 98◦C 8 sec.
annealing 51◦C 20 sec. 30
extension 72◦C 45 sec.

final extension 72◦C 5 min 1

4. After cycling, the reaction will automatically be maintained at 4◦C until you
retrieve it for gel electrophoresis.

When the PCR reaction has been completed, the TAs will take your samples to
send away for sequencing. Make sure your PCR tubes are labeled with your and
your partner’s initials and the tubes’ contents!

4 Assignment
Problem 0 (Summary).
Write a summary of this experiment, its objectives, and conclusions between one
paragraph and one page in length.

Problem 1 (Fano factors in the toy problem (prelab)).
Consider the toy problem discussed in section 2.2. Compute the expected number
of mutant cells under the adaptive immunity hypothesis. (We already computed this
mean for the random mutation hypothesis in section 2.2.) Compute the variance in
the number of cells for both the hypotheses. Finally, compute the Fano factor for
both hypotheses. How do they compare?

Problem 2 (Hemocytometer volumes (prelab)).
Consider the central (1mm×1mm) region of a hemocytometer in Figure 3. Calculate
the volume in microliters of a large (0.2mm× 0.2mm) square and small (0.05mm×
0.05mm) square in the hemocytometer.

Problem 3 (Simulating mutations).
In this problem, we will simulate mutations among populations of cells for the adap-
tive immunity hypothesis and for the random mutation hypothesis.

a) Starting with 1000 non-mutated cells and a mutation rate of 10−5 mutations
per cell division, run a computer simulation of mutations over the course of
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several generations. Do this at least 100 times each for both the adaptive im-
munity hypothesis and for the random mutation hypothesis.

b) Plot the probability distributions (P(n;N) vs. n) for each hypothesis, where n
is the number of mutant cells present at the end of the simulation and N is the
total number of cells.

c) Calculate the mean, variance, and Fano factors for each hypothesis.

d) For which hypothesis is the distribution binomial? Does this jibe with the dis-
cussion in the Background section?

Problem 4 (Data analysis).

a) Build a histogram of the number of colonies per spot for wild type andMSH2
strains.

b) Calculate the mean, variance, and Fano factor for each distribution.

c) Based on your results from data collected in class, is the distribution of the
number of mutants binomial? Looking back at problem 3, which hypothesis
results in a simulated distribution of mutants most similar to what is observed
experimentally? What do you conclude about how mutations arise?

d) Using the fraction of spots that have zero colonies, estimate the mutation rate
a from equation (7) for both the wild type and MSH2 strains.

e) What are some of the sources of error in this experiment?

Problem 5 (Sequence analysis).
During the Luria Delbrück experiment, we exposed S. cerevisiae cells to the toxin
canavanine to obtain information about the distribution of the numbers of mutants
that arise under selective pressure. When grown on canavanine plates, S. cerevisiae
take up canavanine, which takes the place of the amino acid, arginine, in polypeptide
chains. Yeast cells that incorporate canavanine into polypeptide chains instead of
arginine cannot survive.

The CAN1 gene codes for a membrane protein that is responsible for the up-
take of canavanine. Yeast cells with the CAN1 mutation that renders this gene non-
functional would not introduce canavanine into the cell. Consequently, these cells
that contain CAN1 mutations survive when grown on canavanine plates.

The colony PCR reactions you performed using theMSH2 and wild type S. cere-
visiae strains were sequenced by Laragen. Since the CAN1 gene is too long to se-
quence in one single reaction, five primers were used to perform five sequencing
reactions. The sequencing results can be downloaded from the course website. The
naming convention of the sequencing results, as we received them from Laragen, is
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XXXX_STRAIN_P.ab1, where XXXX are the initials of the experimenter, STRAIN
is the name of the strain (either WT or MSH2), and P is the number of the primer,
taking values 1, 2, 3, 4, and 5. These ab1 files have the sequences, as well as in-
formation about the quality of the sequence; that is how sure we are of the identity
of each base. There are also files names XXXX_STRAIN_P.Seq that have just the
sequencing data. Note that a if a base is reported as N, the identity of the base could
not be ascertained.

As you are analyzing your sequences, you may find that you have failed reads,
or very low quality sequences. This can result from failed PCR. IF this is the case,
note it in your assignment and you may randomly choose another group’s set of se-
quences. Please be sure to note which sequences you used.

The first step in analysis is to align the sequences with the reference wild type
CAN1gene. Toget thewild type sequence, you can query theYeastGenomeDatabase
for CAN1. We can then download a FASTA (.fsa) file containing the sequence.

To perform the alignment, we will use Benchling. You should get an account at
benchling.com. To assemble the sequences using Benchling, do the following.

1. Create a newproject folder (call it something likeLD_sequence_assembly)
using the + button in the left panel.

2. In the new project folder you can then click the+ button in the Inventory panel
(again in the left panel). Select Import Sequences. You can now import
your FASTA file of the CAN1 gene.

3. Perform the alignment: Select the CAN1 sequence that you imported. On the
right most panel, there are several icons with different tools. Hover over them
and click theAlign tool (5th one down). SelectCREATE NEW ALIGNMENT.
Select CHOOSE FILE(s) and find your sequencing files. You should use the
ab1 files because you will also be able to see the quality of the sequences. Fi-
nally select CREATE ALIGNMENT.

4. After the alignment is complete, you should be able to seewhether the colonies
you selected have anymutations. Nucleotide positions that are highlighted red
are mismatches between the sequence and the CAN1 template. Keep in mind
that sequences near the start of a sequencing run and near the end will have
low quality scores and be unreliable (that’s why we’ve performed 5 staggered
sequencing runs).

Use the alignment to find discrepancies between the wild type CAN1 gene and
those that you sequenced from your colonies that survived Canavanine exposure.
You should only consider a mismatch between your sequences and the reference se-
quence to be amutation if all (and at least two) of the sequences covering the region of
the reference sequence show the same discrepancy. A snapshot (using print screen
or similar) is sufficient when you submit your assignment.
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What types of mutations (single base pair substitution, insertion, deletion, etc)
are there? Where are the mutations located? Do you find these results surprising?
How do the mutations compare between the WT and MSH2 strains? Comment on
the differences you observe. Why do you think you observe these differences?

Note: In this problem, we have left the algorithmic details of sequence alignment
to the built-in algorithms in Benchling. If you are interested in the algorithms for
alignment, there is a vast literature to explore. You might start by looking into the
Needleman-Wunsch and Smith-Waterman algorithms.

Problem 6 (Data and code).
Attach all code, data, and sample images not specifically asked for in the other prob-
lems.

5 Appendix: moments of the binomial distribution
We begin by computing the first moment, the mean.

⟨n⟩ =
N∑

n=0

n
N!

(N − n)!n!
an(1− a)N−n =

N∑
n=1

N!

(N − n)!(n − 1)!
an(1− a)N−n

= Na
N∑

n=1

(N − 1)!
(N − n)!(n − 1)!

an−1(1− a)N−n. (8)

We make the substitutions m = n − 1 and M = N − 1 to get

⟨n⟩ = Na
M∑

m=0

M!

(M − m)!m!
am(1− a)M−m = Na, (9)

where the sum evaluates to unity because the binomial distribution is normalized.
To compute the second moment, it is easier to compute

⟨n(n − 1)⟩ =
N∑

n=0

n(n − 1)
N!

(N − n)!n!
an(1− a)N−n

=
N∑

n=2

N!

(N − n)!(n − 2)!
an(1− a)N−n

= N(N − 1)a2
N∑

n=2

(N − 2)!
(N − n)!(n − 2)!

an−2(1− a)N−n

13



= N(N − 1)a2
M∑

m=0

M!

(M − m)!m!
am(1− a)M−m

= N(N − 1)a2, (10)

where this time we have made the substitutions m = n − 2 and M = N − 2. Thus,
we have

⟨n(n − 1)⟩ = ⟨n2⟩ − ⟨n⟩ = N(N − 1)a2

⇒ ⟨n2⟩ = Na(1− a + Na). (11)

Therefore, the variance is

σ 2 = ⟨n2⟩ − ⟨n⟩2 = Na(1− a). (12)
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